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On s-Topological Groups

Muhammad Siddique Bosan, Moiz ud Din Khan
and Ljubiša D.R. Kočinac∗)

Abstract. In this paper we study the class of s-topological groups
and a wider class of S-topological groups which are defined by us-
ing semi-open sets and semi-continuity introduced by N. Levine. It
is shown that these groups form a generalization of topological groups,
and that they are different from several distinct notions of semitopolog-
ical groups which appear in the literature. Counterexamples are given
to strengthen these concepts. Some basic results and applications of
s- and S-topological groups are presented. Similarities with and differ-
ences from topological groups are investigated.

1. Introduction

If a set is endowed with algebraic and topological structures, then it is
natural to consider and investigate interplay between these two structures.
The most natural way for such a study is to require algebraic operations to
be continuous. It is the case in investigation of topological groups: the multi-
plication mapping and the inverse mapping are continuous. Similar situation
is with topological rings, topological vector spaces and so on. However, it
is also natural to see what will happen if some of algebraic operations sat-
isfy certain weaker forms of continuity. Such a study in connection with
topological groups started in the 1930s and 1950s and led to investigation
of semitopological groups (the multiplication mapping is separately con-
tinuous), paratopological groups (the multiplication is jointly continuous),
quasi-topological groups (which are semitopological groups with continu-
ous inverse mapping). It is naturally suggested to identify conditions under
which these classes of groups are topological groups. In the last twenty-thirty
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years many nice results related to this mathematical discipline appeared in
the literature, and the list of such papers is too long to be mentioned here;
because of that we refer the reader to two excellent sources: the monograph
[2] by Arhangel’skii and Tkachenko, and Tkachenko’s survey paper [21], and
references therein.

Our approach in the present paper is different, and we require less restric-
tive conditions on the group operations: neither of the operation is required
to be continuous. Our assumption is that the group operations are semi-
continuous in the sense of N. Levine [16] (equivalently, quasi-continuous in
the sense of Kempisty [13]). In this way we define two classes of groups (to-
gether with a topology) called here s-topological groups and S-topological
groups. (Notice that the notion of s-topological groups have already ap-
peared in the literature [3].) Some basic results on these generalizations of
topological groups are obtained, and similarities with and differences from
topological groups are explored.

2. Preliminaries

Throughout this paper X and Y are always topological spaces on which
no separation axioms are assumed. For a subset A of a space X the symbols
Int(A) and Cl(A) are used to denote the interior of A and the closure of A.
If f : X → Y is a mapping between topological spaces X and Y and B is a
subset of Y , then f←(B) denotes the pre-image of B. Our other topological
notation and terminology are standard as in [10]. If (G, ∗) is a group, then
e denotes its identity element, and for a given x ∈ G, `x : G→ G, y 7→ x∗y,
and rx : G → G, y 7→ y ∗ x, denote the left and the right translation
by x, respectively. The operation ∗ we call the multiplication mapping
m : G×G→ G, and the inverse operation x 7→ x−1 is denoted by i.

In 1963, N. Levine [16] defined semi-open sets in topological spaces. Since
then many mathematicians explored different concepts and generalized them
by using semi-open sets (see [1, 8, 11, 19, 20]). A subset A of a topological
space X is said to be semi-open if there exists an open set U in X such
that U ⊂ A ⊂ Cl(U), or equivalently if A ⊂ Cl(Int(A)). SO(X) denotes the
collection of all semi-open sets in X. The complement of a semi-open set is
said to be semi-closed ; the semi-closure of A ⊂ X, denoted by sCl(A), is
the intersection of all semi-closed subsets of X containing A [6, 7]. Let us
mention that x ∈ sCl(A) if and only if for any semi-open set U containing
x, U ∩A 6= ∅.

Clearly, every open (closed) set is semi-open (semi-closed). It is known
that the union of any collection of semi-open sets is again a semi-open set,
while the intersection of two semi-open sets need not be semi-open. The
intersection of an open set and a semi-open set is semi-open. If A ⊂ X and
B ⊂ Y are semi-open in spaces X and Y , then A × B is semi-open in the
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product space X × Y . Basic properties of semi-open sets are given in [16],
and of semi-closed sets and the semi-closure in [6, 7].

Recall that a set U ⊂ X is a semi-neighbourhood of a point x ∈ X if
there exists A ∈ SO(X) such that x ∈ A ⊂ U . A set A ⊂ X is semi-open
in X if and only if A is a semi-neighbourhood of each of its points. If a
semi-neighbourhood U of a point x is a semi-open set we say that U is a
semi-open neighbourhood of x.

Definition 2.1. ([16]) Let X and Y be topological spaces. A mapping
f : X → Y is semi-continuous if for each open set V in Y , f←(V ) ∈ SO(X).

Clearly, continuity implies semi-continuity; the converse need not be true.
Notice that a mapping f : X → Y is semi-continuous if and only if for each
x ∈ X and each neighbourhood V of f(x) there is a semi-open neighbour-
hood U of x with f(U) ⊂ V .

In [13], Kempisty defined quasi-continuous mappings: a mapping f : X →
Y is said to be quasi-continuous at a point x ∈ X if for each neighbourhood
U of x and each neighbourhood W of f(x) there is a nonempty open set
V ⊂ U such that f(V ) ⊂W ; f is quasi-continuous if it is quasi-continuous at
each point (see also [17]). Neubrunnová in [18] proved that semi-continuity
and quasi-continuity coincide.

Definition 2.2. ([8]) A mapping f : X → Y is called:

(1) pre-semi-open if for every semi-open set A of X, the set f(A) is
semi-open in Y ;

(2) irresolute if for every semi-open set B in Y , the set f←(B) is semi-
open in X;

(3) semi-homeomorphism if it is bijective, pre-semi-open and irresolute.

Call a bijective mapping f : X → Y S-homeomorphism if it is semi-
continuous and pre-semi-open.

Lemma 2.1. Let f : X → Y be a given mapping. Then f is irresolute if
and only if for every x ∈ X and every semi-open set V ⊂ Y containing f(x),
there exists a semi-open set U in X such that x ∈ U and f(U) ⊂ V .

3. s-Topological Groups

In this section, the notion of S-topological groups is introduced by us-
ing semi-open sets and semi-continuity of the group operations. Relations
between this class of groups and other classes of groups endowed with a
topology are considered. It is pertinent to mention that this notion of S-
topological groups is different from the notion of semi-topological groups al-
ready available in the literature, in particular from semi-topological groups
introduced in [3] and called here s-topological groups.
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Definition 3.1. (a) A triple (G, ∗, τ) is said to be an S-topological group
if (G, ∗) is a group, (G, τ) is a topological space, and (a) the mul-
tiplication mapping m : G × G → G defined by m(x, y) = x ∗ y,
x, y ∈ G, is semi-continuous, (b) the inverse mapping i : G → G
defined by i(x) = x−1, x ∈ G, is semi-continuous.

(b) ([3]) An s-topological group is a group (G, ∗) with a topology τ such
that for each x, y ∈ G and each neighbourhoodW of x∗y−1 there are
semi-open neighbourhoods U of x and V of y such that U ∗V −1 ⊂W .

It follows from the definition that every topological group is both an
s- and S-topological group. It is shown in [3, Theorem 7] that every s-
topological group is an S-topological group. The examples below show that
the converses are not true.

Remark 3.1. In the literature there are several different notions of semi-
topological groups [4] (the multiplication mapping is continuous in each
variable separately and the inverse mapping is continuous), [2,5,12,21] (the
multiplication mapping is continuous in each variable separately; through-
out this paper we adopt this definition of semitopological groups), [3] (see
the above definition). This fact motivated us to use the name S-topological
groups for the introduced class and so to avoid a possible confusion. Our
groups are different from the other mentioned groups. The Sorgenfrey line
with the usual addition in R is a semitopological (in fact, paratopological)
group which is not an S-topological group, because the inverse mapping i
is not semi-continuous: the preimage i←([a, b)) = (−b,−a] of the open set
[a, b), a < b, is not semi-open. By [5, Example 2.6 (b)] the real line R with
the usual addition and the co-finite topology is another such example (here
the multiplication mapping is not semi-continuous). Example 5.1.22 in [10]
(see [5]) is an S-topological group which is not a semitopological group. It
is worth to mention that according to a result in [14] every paratopological
S-topological group is a topological group.

Example 3.1. Let G = Z2 = {0, 1} be the two-element (cyclic) group with
the multiplication mapping m = +2 – the usual addition modulo 2. Equip
G with the Sierpiński topology τ = {∅, {0}, G}. It is easy to see that

SO(G×G) =
{
∅, {(0, 0)}, {(0, 0), (0, 1)}, {(0, 0), (1, 0)}, {(0, 0), (0, 1), (1, 0)},

{(0, 0), (0, 1), (1, 0), (1, 1)}, {(0, 0), (1, 1)},

{(0, 0), (0, 1), (1, 1)}, {(0, 0), (1, 0), (1, 1)}
}

and that m : G×G→ G is continuous at (0, 0), (1, 0), (0, 1), but not contin-
uous at (1, 1). However, m is semi-continuous at (1, 1). For this, let us take
the open set V = {0} in G containing m(1, 1) = 0. Then the semi-open set
U = {(0, 0), (1, 1)} ⊂ G×G contains (1, 1) and m(U) ⊂ V .
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The inverse mapping i : G→ G is continuous and hence semi-continuous.
Therefore, (G,+2, τ) is an S-topological group which is not a topological
group. It was noticed in [3] that (G,+2, τ) is not an s-topological group,
and in [5] that it is not a semitopological group.

Remark 3.2. Let n > 2 be a natural number. Consider the cyclic group
G = Zn = {0, 1, · · · , n − 1} of order n with the multiplication mapping
m = +n – the addition modulo n. Take the topology τ = {∅, G, {0}}
on G. Then (G,+n, τ) is an S-topological group. Indeed, the preimage
m←({0} of the open set {0} in G is the semi-open set M = m←({0} =
{(0, 0)} ∪ {(k, n − k) : 1 ≤ k ≤ n − 1} ⊂ G × G (the set {(0, 0)}, open in
G×G, satisfies {(0, 0)} ⊂M ⊂ Cl({(0, 0)}) = G×G). On the other hand,
the inverse mapping i : G→ G is continuous, and thus semi-continuous.

Example 3.2. The set G = {1, 3, 5, 7} is an Abelian group under multi-
plication m = �8 – the usual multiplication modulo 8. Endow G with the
topology τ = {∅, G, {1}, {1, 3, 5}}. We have

SO(G) = {∅, G, {1}, {1, 3}, {1, 5}, {1, 7}, {1, 3, 5}, {1, 3, 7}, {1, 5, 7}}.
It is now not hard to see that the inverse mapping i : G → G is continu-
ous on G, hence semi-continuous on G, that the mapping m is continuous
at points (1, 1), (1, 3), (3, 1), (1, 5), (5, 1), (1, 7), 7(, 1), (3, 5), (5, 3), and semi-
continuous at
(3, 3), (3, 7), (7, 3), (5, 5), (5, 7), (7, 5), (7, 7) where it is not continuous. There-
fore, (G,�8, τ) is an S-topological group and not a topological group.

Remark 3.3. It is known that the family of semi-open sets in a topological
space need not be a topology. Note that the family SO(G) in Example 3.2 is a
topology on G different from τ . However, the group G with the new topology
SO(G) also is not a topological group: for the SO(G)-neighbourhood {1} of
3�8 3

−1 = 1 there is no neighbourhood V of 3 with V ⊕8 V
−1 ⊂ {1}.

In the above examples the inverse mapping is continuous. The next ex-
ample gives an S-topological group in which the inverse mapping i is not
continuous.

Example 3.3. An S-topological group without continuity of the inverse
mapping.

Consider the group (Z3,+3, τ), where τ = {∅,Z3, {0}, {0, 1}}. As in the
previous examples it is easy to check that the multiplication mapping +3 is
continuous at points (0, 0), (0, 1), (1, 0), (0, 2), (2, 0) and (1, 1), and semi-
continuous at (1, 2), (2, 1) and (2, 2). The inverse mapping i is continuous
at 0 and 1, and semi-continuous at 2, where it is not continuous.

Separation axioms semi-T0, semi-T1, semi-T2, s-regular are defined as the
classical axioms T0, T1, T2, regular, replacing everywhere "open neighbour-
hoods" by "semi-open neighbourhoods" (see for example [9]).
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Remark 3.4. The group (G,�8, τ) in this example is a T0 space which
is not semi-T1. Also, it is not an s-regular space since for the closed set
A = {3, 5, 7} in G and the point 1 /∈ A there are no disjoint semi-open neigh-
bourhoods. Therefore, unlike the topological groups where the separation
axioms are equivalent, and the regularity axiom is satisfied, S-topological
groups may have different properties.

The group of Example 3.1 has the same properties.

Example 3.4. There is a Tychonoff Abelian S-topological group which is
not a topological group.

According to [5, Example 2.7], Example 5.1.12 in [10] (the real line R
with the topology τ in which all rational singletons are open, and neigh-
bourhoods of irrational points are usual Euclidean neighbourhoods) with
the usual addition is an S-topological group, but not a (semi)topological
group.

The following lemma will be used in the sequel.

Lemma 3.1 (([3])). If (G, ∗, τ) is an s-topological group, then:
(1) A ∈ SO(G) if and only if A−1 ∈ SO(G);
(2) If A ∈ SO(G) and B ⊂ G, then A ∗B and B ∗A are both in SO(G).

Also, we have the following (known) definition.

Definition 3.2. A subset A of a group G is symmetric if A = A−1.

The following simple result is of fundamental importance in what follows.

Theorem 3.1. Let (G, ∗, τ) be an s-topological group. Then each left (right)
translation `g : G→ G (rg : G→ G) is an S-homeomorphism.

Proof. We prove the statement only for left translations. Of course, left
translations are bijective mappings. We prove directly that for any x ∈ G the
translation `x is semi-continuous. Let y be an arbitrary element in G and let
W be an open neighbourhood of `x(y) = x∗y = x∗(y−1)−1. By definition of
s-topological groups there are semi-open sets U and V containing x and y−1,
respectively, such that U ∗ V −1 ⊂ W . In particular, we have x ∗ V −1 ⊂ W .
By Lemma 3.1 the set V −1 is a semi-open neighbourhood of y, so that the
last inclusion actually says that `x is semi-continuous at y. Since y ∈ G was
an arbitrary element in G, `x is semi-continuous on G.

We prove now that `x is pre-semi-open. Let A be a semi-open set in G.
Then by Lemma 3.1, the set `x(A) = x ∗ A = {x} ∗ A is semi-open in G,
which means that `x is a pre-semi-open mapping. �

Remark 3.5. The previous theorem is not true for S-topological groups.
Let G be the S-topological group of Example 3.1. Then {0} is an open
set in G, but `1({0}) = {1} is not semi-open in G. Therefore, `1 is not a
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pre-semi-open mapping and consequently it is not an S-homeomorphism of
G.

Similarly, for the group G of Example 3.2 the left translation `3 is not
pre-semi-open because the image `3({1}) = {3} is not semi-open in G.

Corollary 3.1. Let (G, ∗, τ) be an s-topological group and x be any element
of G. Then for any local base βe at e ∈ G, the each of the families βx =
{x ∗ U : U ∈ βe} and {x ∗ U−1 : U ∈ βe} is a semi-open neighbourhood
system at x.

Definition 3.3. A topological space X is said to be S-homogeneous if for
all x, y ∈ X there is an S-homeomorphism f of the space X onto itself such
that f(x) = y.

Corollary 3.2. Every s-topological group G is an S-homogeneous space.

Proof. Take any elements x and y in G and put z = x−1 ∗ y. Then `z is an
S-homeomorphism of G and `z(x) = x ∗ z = x ∗ (x−1 ∗ y) = y. �

Theorem 3.2. Let (G, ∗, τ) be an s-topological group and H a subgroup of
G. If H contains a non-empty semi-open set, then H is semi-open in G.

Proof. Let U be a non-empty semi-open subset of G with U ⊂ H. For
any h ∈ H the set `h(U) = h ∗ U is semi-open in G and is a subset of H.
Therefore, the subgroup H =

⋃
h∈H(h ∗ U) is semi-open in G as the union

of semi-open sets. �

Theorem 3.3. Every open subgroup H of an s-topological group (G, ∗, τ) is
also an s-topological group (called s-topological subgroup of G).

Proof. We have to show that for each x, y ∈ H and each neighbourhood
W ⊂ H of x ∗ y−1 there exist semi-open neighbourhoods U ⊂ H of x and
V ⊂ H of y such that U ∗ V −1 ⊂ W . Since H is open in G, W is an
open subset of G and since G is an s-topological group there are semi-open
neighbourhoods A of x and B of y such that A ∗ B−1 ⊂ W . The sets
U = A ∩H and V = B ∩H are semi-open subsets of H because H is open.
Also, U ∗ V −1 ⊂ A ∗ B−1 ⊂ W , which means that H is an s-topological
group. �

Theorem 3.4. Let (G, ∗, τ) be an s-topological group. Then every open
subgroup of G is semi-closed in G.

Proof. Let H be an open subgroup of G. Then every left coset x∗H of H is
semi-open because `x is a pre-semi-open mapping. Thus, Y =

⋃
x∈G\H x∗H

is also semi-open as a union of semi-open sets. Then H = G \ Y and so H
is semi-closed. �

It is known: if H is a subgroup of a topological group G, then Cl(H) is
also a subgroup of G. What about s- and S-topological groups? The answer
is No: both Cl(H) and sCl(H) need not be subgroups of G.
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Example 3.5. Take the subgroup H1 = {1, 3} of the group G of Example
3.2. Then Cl(H1) = {1, 3, 5} which is not a subgroup of G. On the other
hand, for the subgroup H2 = {1, 7} of G we have sCl(H2) = {1, 5, 7} which
also is not a subgroup of G.

Theorem 3.5. Let f : G→ H be a homomorphism of s-topological groups.
If f is irresolute at the neutral element eG of G, then f is irresolute (and
thus semi-continuous) on G.

Proof. Let x ∈ G. Suppose that W is a semi-open neighbourhood of y =
f(x) in H. Since the left translations in H are semi-continuous mappings,
there is a semi-open neighbourhood V of the neutral element eH of H such
that `y(V ) = y ∗ V ⊂ W . From irresoluteness of f at eG it follows the
existence of a semi-open set U ⊂ G containing eG such that f(U) ⊂ V .
Since `x : G → G is a pre-semi-open mapping, the set x ∗ U is a semi-open
neighbourhood of x, and we have

f(x ∗ U) = f(x) ∗ f(U) = y ∗ f(U) ⊂ y ∗ V ⊂W.

Hence f is irresolute (and thus semi-continuous) at the point x of G, hence
on G, because x was an arbitrary element in G. �

Theorem 3.6. Let (G, ∗, τ) be an s-topological group with base βe at the
identity element e such that for each U ∈ βe there is a symmetric semi-open
neighbourhood V of e such that V ∗ V ⊂ U . Then G satisfies the axiom of
s-regularity at e.

Proof. Let U be an open set containing the identity e. Then, by assumption,
there is a symmetric semi-open neighbourhood V of e satisfying V ∗V ⊂ U .
We have to show that sCl(V ) ⊂ U . Let x ∈ sCl(V ). The set x ∗V is a semi-
open neighbourhood of x, which implies x ∗V ∩V 6= ∅. Therefore, there are
points a, b ∈ V such that b = x∗a, i.e. x = b∗a−1 ∈ V ∗V −1 = V ∗V ⊂ U . �

Theorem 3.7. Let A and B be subsets of an s-topological group G. Then:
(1) sCl(A) ∗ sCl(B) ⊂ Cl(A ∗B);
(2) (sCl(A))−1 ⊂ Cl(A−1).

Proof.
(1) Suppose that x ∈ sCl(A), y ∈ sCl(B). Let W be a neighbourhood of

x ∗ y. Then there are semi-open neighbourhoods U and V of x and
y such that U ∗ V ⊂ W . Since x ∈ sCl(A), y ∈ sCl(B), there are
a ∈ A∩U and b ∈ B∩V . Then a∗b ∈ (A∗B)∩(U ∗V ) ⊂ (A∗B)∩W .
This means x∗y ∈ Cl(A∗B), i.e. we have sCl(A)∗sCl(B) ⊂ Cl(A∗B).

(2) Let x ∈ (sCl(A))−1 and let U be a neighbourhood of x. Since the
inverse mapping is pre-semi-open, the set U−1 is semi-open neigh-
bourhood of x−1. Since x−1 ∈ sCl(A), U−1 ∩ A 6= ∅. Therefore,
U ∩A−1 6= ∅, i.e. x ∈ Cl(A−1), and so (sCl(A))−1 ⊂ Cl(A−1). �
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Remark 3.6. The inclusions in the previous theorem are not true for S-
topological groups. Let G be the group in Example 3.2. Take sets A =
{1, 3} and B = {5, 7}. Then sCl(A) = G and sCl(B) = {5, 7}. Therefore,
sCl(A) ∗ sCl(B) = G, and sCl(A ∗B) = {5, 7} and Cl(A ∗B) = {3, 5, 7}.
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